Skip to main content
Hyperbolic Poincare Projection

Hyperbolic Poincare Projection

About

The field of circuit QED has emerged as a rich platform for both quantum computation and quantum simulation. Lattices of coplanar waveguide (CPW) resonators realize artificial photonic materials in the tight-binding limit. Combined with strong qubit-photon interactions, these systems can be used to study dynamical phase transitions, many-body phenomena, and spin models in driven-dissipative systems. These waveguide cavities are uniquely deformable and can produce lattices and networks which cannot readily be obtained in other systems, including periodic lattices in a hyperbolic space of constant negative curvature, and the one-dimensional nature of CPW resonators leads to degenerate flat bands. In our lab, we build experimental implementations of these systems using superconducting circuits.

Postdoc and graduate student positions available! Send email to: akollar@umd.edu

Group Lead

Alicia Kollár portrait

Alicia Kollár

Co-PI, Co-Associate Director of Research

All Group Members

  • Ibukunoluwa Adisa's Headshot
  • Maya Amouegar
  • Ben Cochran
  • Kellen O'Brien
  • Zhiyin Tu
  • Ruthie Vogel
  • Billy

Alumni

  • Martin Ritter
  • Sebastian Rivera Munoz

Recent News

  • A dark reflective chip with gold lines on it and small wires coming from all sides. The chip is dominated by three squiggly lines that each lead down to rectangles that contain small bright dots in their center.

    New Design Packs Two Qubits into One Superconducting Junction

    October 21, 2024

    Quantum computers are the basis of a growing industry. However, their technology isn’t standardized yet, and researchers are still studying the physics that goes into quantum devices. Even the most basic building blocks of a quantum computer—qubits—are still an active research topic. In an article in the journal Physical Review A, JQI researchers proposed a way to use the physics of superconducting junctions to let each function as more than one qubit.

  • Mind and Space Bending Physics on a Convenient Chip

    October 7, 2020

    Thanks to Einstein, we know that our three-dimensional space is warped and curved. And in curved space, normal ideas of geometry and straight lines break down, creating a chance to explore an unfamiliar landscape governed by new rules. Spaces that have different geometric rules than those we usually take for granted are called non-Euclidean. Physicists are interested in new physics that curved space can reveal, and non-Euclidean geometries might even help improve designs of certain technologies. One type of non-Euclidean geometry that is of interest is hyperbolic space. Even a two-dimensional, physical version of a hyperbolic space is impossible to make in our normal, “flat” environment. But scientists can still mimic hyperbolic environments to explore how certain physics plays out in negatively curved space. In a recent paper in Physical Review A, a collaboration between Kollár’s research group and JQI Fellow Alexey Gorshkov’s group presented new mathematical tools to better understand simulations of hyperbolic spaces. The research builds on Kollár’s previous experiments to simulate orderly grids in hyperbolic space by using microwave light contained on chips. Their new toolbox includes what they call a “dictionary between discrete and continuous geometry” to help researchers translate experimental results into a more useful form. With these tools, researchers can better explore the topsy-turvy world of hyperbolic space.

Recent Publications